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Abstract

In this paper, a linear, iterative solver for the radiative heat transfer (RHT) equations appearing in the simulation of

glass cooling is studied. The solver becomes slow if the regime is optically thick, i.e., if absorption and scattering of

radiation are strong. We propose a preconditioning technique for the RHT equations analogous to DSA precondi-

tioning for the radiative transport equation using the P1 approximation corresponding to the system investigated.

Numerical investigations demonstrate the feasibility and performance of the approach.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

The temperature evolution in a glass slab can be mathematically modeled by the radiative heat transfer

(RHT) equations, i.e., a coupled system of a heat equation and a radiative transfer equation [8,14,18,19].

This reflects the underlying physics of glass cooling where heat conduction and radiation are the dominant

processes for energy transfer. The coupling of the two equations is done by energy exchange terms between

the radiation of the hot glass and the radiation field. Fast solvers are needed because simulations are

computationally costly, primarily due to the fact that the radiation has to be calculated not only for each

position but also for each direction. Efficient simulation of radiative processes, therefore, is still a chal-

lenging task and an area of active research with a wide range of applications not only in glass cooling but
also in the design of gas turbines, for example.

In this paper, we consider a simple Richardson iteration for a semi-discretized RHT system with

discretized time and continuous space variable, and for a fully discretized system. When this iteration

is used, convergence becomes slow in the optically thick regime such that an acceleration technique
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has to be employed. We propose an iterative scheme that uses the P1 approximation to the RHT

equations as a preconditioner. The procedure is motivated by the ideas used in the construction of the

fast DSA solver, which is a highly effective preconditioning technique for the transport equation and

which has been intensively studied in the realm of neutron transport theory [1,9,12]. In fact, it extends

the method applied to the stationary transport equation to the case of the stationary RHT equations.

Moreover, the method we propose uses DSA as a basic building block for solving the radiation

equation. We also refer, e.g., to [3,15] for other applications of the DSA method to thermal radiative

transfer problems.
We consider the following system of non-dimensional RHT equations in one-dimensional slab geometry

on the unit interval x 2 ½0; 1� in space and for all times t > 0

e2
oT
ot

¼ e2oxðkoxT Þ þ hjðI � BÞi; ð1:1aÞ
8l 2 ½�1; 1� : eloxI þ rsI ¼
1

4p
hrsIi þ jðB� IÞ; ð1:1bÞ

where T ¼ T ðx; tÞ denotes the temperature and I ¼ Iðx; t; lÞ represents the (direction-dependent) radiative

intensity. The brackets indicate integration over all directions, i.e., in 1D we have hIi ¼ 2p
Rþ1

�1
IðlÞdl [10].

Eqs. (1.1a) and (1.1b) contain the heat conductivity k, the scattering and the absorption cross-sections rs, j,
respectively, and the non-dimensional parameter e. They are assumed to be constants. The total spectral

intensity B for a Planckian in glass is given by Stefan�s Law according to

BðT Þ ¼ n2
r
p
T 4

with the refraction index n of glass and the Stefan–Boltzmann constant r. On the boundary, for x ¼ 0 or

x ¼ 1, the ingoing radiation is prescribed by transparent boundary conditions

8l > 0 : Iðl; 0Þ ¼ Ibðl; 0Þ and 8l < 0 : Iðl; 1Þ ¼ Ibðl; 1Þ; ð1:1cÞ

while the temperature is assumed to obey Dirichlet boundary conditions

T ð0Þ ¼ Tl; T ð1Þ ¼ Tr: ð1:1dÞ

Boundary values are assumed to be constant with respect to time t. At initial time t ¼ 0 the temperature is

T ðx; 0Þ ¼ T0ðxÞ.
2. Linear, iterative scheme for RHT equations

We begin by making the following observation in order to obtain a linear semi-discretized system of

equations that can be solved using a linear iterative method. Using B � T 4 from Stefan�s Law for Planck�s
radiation as an independent variable instead of the temperature T [7], Eq. (1.1a) reads

e2
oB
ot

¼ e2ðB0Þox
k

ðB0Þ oxB
� �

þ ðB0ÞhjðI � BÞi; ð2:1Þ

with B0 ¼ dB=dT . If we discretize time at this point in the following semi-implicit way then
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e2
Bðnþ1Þ � BðnÞ

Dt
¼ e2ðB0ÞðnÞox

k

ðB0ÞðnÞ
oxBðnþ1Þ

 !
þ ðB0ÞðnÞhjðI ðnþ1Þ � Bðnþ1ÞÞi

8l 2 ½�1; 1� : eloxI ðnþ1Þ þ rsI ðnþ1Þ ¼ 1

4p
hrsI ðnþ1Þi þ jðBðnþ1Þ � I ðnþ1ÞÞ:

At each time step a linear system has to be solved:

e2
"

þ DtðB0ÞðnÞ4pj� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
Bðnþ1Þ � DtðB0ÞðnÞjhI ðnþ1Þi ¼ e2BðnÞ; ð2:2aÞ
�jBðnþ1Þ þ eloð�Þ
h

þ rs þ j� rs

4p
h�i
i
I ðnþ1Þ ¼ 0; ð2:2bÞ

or more formally written in operator–matrix notation

A11 A12

A21 A22

� �
Bðnþ1Þ

I ðnþ1Þ

� �
¼ bT

bI

� �
¼ e2BðnÞ

0

� �
: ð2:2cÞ

The elliptic operator A11 and the transport operator A22 are well known and can be efficiently solved using

standard methods. For A22 the method of choice in the 1D case is the DSA iteration, which is highly efficient

for large class of problems even in the optically thick regime [12]. This observation and the form of (2.2c)
suggest an iterative approach of block type for solving the semi-discretized system above. For our inves-

tigation we took Jacobi and block Gauss–Seidel into account. To keep the presentation short we focus

in the sequel on a Gauss–Seidel iteration using the upper triangular part of the block matrix. This is

no restriction because similar results can be obtained in the other cases using the same procedure (see

Appendices A and B).

Using the upper triangular matrix in (2.2c), the linear iteration is given by

for kP 1 :
A11 A12

0 A22

� �
Bkþ1

Ikþ1

� �
¼ e2BðnÞ

�A21Bk

� �
: ð2:3Þ

The initial iterates B0 ¼ BðnÞ and I0 ¼ I ðnÞ are chosen to start the iteration. Numerical experiments in the

area of glass cooling applications reveal that convergence becomes unacceptingly slow in the optically thick

regime, i.e., if e is small. To assess this behaviour we investigate the reduction of the error using a von

Neumann analysis. In order to do so, an infinite, homogeneous-space medium has to be assumed and,
furthermore, ðB0ÞðnÞðT Þ, has to be constant with respect to x. These are strong restrictions, but a similar von

Neumann analysis has been carried out for source iteration and DSA and gives important insight into these

algorithms [1]. The results obtained there remain largely valid in many other cases, e.g., for inhomogeneous

media on finite domains. Therefore, the author believes that the following investigations are valid in a wider

range of cases as well.

Introducing the error of the Planckian and of the radiative intensity

bk ¼ B� � Bk with B� ¼ Bðnþ1Þ;

ik ¼ I� � Ik; I� ¼ I ðnþ1Þ;

where B� and I� are the true solutions of the system (2.2c), the errors fulfill
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for kP 0 :
A11 A12

0 A22

� �
bkþ1

ikþ1

� �
¼ 0

�A21bk

� �
; ð2:4aÞ

or more explicitly

e2
"

þ DtðB0ÞðnÞ4pj� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
bkþ1 � DtðB0ÞðnÞjhikþ1i ¼ 0; ð2:4bÞ
eloð�Þ
h

þ rs þ j� rs

4p
h�i
i
ikþ1 ¼ jbk: ð2:4cÞ

An ansatz for the errors in terms of Fourier modes w.r.t the space variable x (�||2 ¼ �1) is made

bkðxÞ ¼ b̂bkðnÞe�||nx; ikðx; lÞ ¼ ı̂ıkðn; lÞe�||nx

and inserted into (2.4b) and (2.4c). Then

e2
h

þ DtðB0ÞðnÞ4pj� e2kDtð�||nÞ2
i
b̂bkþ1 � DtðB0ÞðnÞjĥııkþ1i ¼ 0; ð2:5aÞ
elð�||nÞ
h

þ rs þ j� rs

4p
h�i
î
ııkþ1 ¼ jb̂bk: ð2:5bÞ

Defining constants

C1 ¼ DtðB0ÞðnÞ4pj; C2 ¼ kDt and v ¼ e2 þ C1 þ C2e
2n2;

the first equation may be shortly written

b̂bkþ1 ¼
C1

4pv
ĥııkþ1i:

Moreover, Eq. (2.5b) allows for the computation of the total radiation

ĥııkþ1i ¼
rs

4p
ĥııkþ1i

�
þ jb̂bk

�
2p
Z þ1

�1

dl
rt þ jþ �||enl

¼ rs

jþ rs

ĥııkþ1i
�

þ j
jþ rs

4pb̂bk

�
1

2

Z þ1

�1

dl

1þ �|| enl
jþrs

:

The integral on the right can be written

S ¼ 1

2

Z þ1

�1

dl

1þ �|| enl
jþrs

¼ 1

2

Z þ1

�1

dl

1þ enl
jþrs

� �2 ¼ rs þ j
en

arctan
en

rs þ j
:

When the following variables are defined

R ¼ en
rs þ j

; x0 ¼
j

rsþj
arctanR

R

1� rs
rsþj

arctanR
R

and x ¼ C1

v
x0;

the expression for the intensity�s new Fourier mode is

ĥııkþ1i ¼ 4px0b̂bkþ1 ¼
C1

v
x0ĥııki ¼ xĥııki:

This result may be summarized by writing the 2� 2 system
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for kP 0 :
b̂bkþ1

ĥııkþ1i

� �
¼ x 0

4px0 0

� �
b̂bk
ĥııki

� �
ð2:6Þ

for the recursive evolution of the Fourier modes. It can be seen that the spectral radius, i.e., the largest

eigenvalue of the matrix is given by

q0 � q0ðe; nÞ ¼ jxðe; nÞj ¼ C1

e2 þ C1 þ C2e2n
2

j
rsþj

arctanR
R

1� rs
rsþj

arctanR
R

: ð2:7Þ

Making use of the relations

0 <
arctanR

R
< 1; lim

R!0

arctanR
R

¼ 1; lim
R!�1

arctanR
R

¼ 0;

for R 6¼ 0, we find

q0ðe; nÞ < 1 and lim
n!0

q0ðe; nÞ ¼
C1

e2 þ C1

; lim
ðe;nÞ!ð0;0Þ

q0ðe; nÞ ¼ 1:

This implies, first of all, that the iteration converges. Nevertheless, convergence becomes slow when e is

small, i.e., in the optically thick regime. Convergence becomes also slow if n is small, i.e., for the long-

wavelength contributions of the error varying on large space scales. It may be noted, however, that short

wavelengths corresponding to n 	 1 are always damped fast. Fig. 1 illustrates this behaviour.
3. Acceleration using the P1 approximation

The previous section showed that the difficulty is that the convergence rates approach 1 when n becomes

small such that the resulting convergence is slow. To remedy the shortcomings of the simple iterative
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method described above a preconditioning technique is applied. The procedure is analogous to the DSA

preconditioning developed for the radiative transfer equation in 1D, where the approach was successfully

introduced. An approximation to the error is added as a correction to the current iterate. If the error could

be computed exactly this would immediately lead to the solution. However, since this would amount to

solving a similar RHT system of equations as before, such an approach is not feasible and we resort to

approximating the system for the errors by the corresponding P1 approximation. It turns out that this

procedure improves the convergence rates in the desired way.

Recall that the P1 approximation for a radiative transport equation in the form

8l 2 ½�1; 1� : eloxI þ ðrs þ jÞI ¼ 1

4p
hrsIi þ jB

is given by

� e2

3ðrs þ jÞDuþ ju ¼ 4pjB in V
with Robin b:c: uþ 2e
3ðrs þ jÞ n � ru ¼ 4I1 on oV ;

where u ¼ hIi is the total radiative energy and an approximation to the intensity is recovered by

I 
 1
4p ðu� 3loxuÞ [13,16,17].

We propose the following preconditioned scheme. In a first step, solve.

e2
"

þ DtðB0ÞðnÞ4pj� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
Bkþ1

2
� DtðB0ÞðnÞjhIkþ1

2
i ¼ e2BðnÞ; ð3:1aÞ
�jBk þ eloð�Þ
h

þ rs þ j� rs

4p
h�i
i
Ikþ1

2
¼ 0: ð3:1bÞ

Then, the errors bkþ1
2
and ikþ1

2
fulfill the error equations

e2
"

þ DtðB0ÞðnÞ4pj� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
bkþ1

2
� DtðB0ÞðnÞjhikþ1

2
i ¼ 0;

eloð�Þ
h

þ rs þ j� rs

4p
h�i
i
ikþ1

2
¼ jbkþ1

2
þ jðBkþ1

2
� BkÞ;

which are approximated by replacing the transfer equation by its corresponding P1 equation as indicated

above. The approximation may be written in the form

e2
"

� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
hkþ1

2
� e2DtðB0ÞðnÞ

3ðrs þ jÞ Dukþ1
2
¼ DtðB0ÞðnÞ4pjðBkþ1

2
� BkÞ; ð3:2aÞ
�4pjhkþ1
2
þ
�
� e2

3ðrs þ jÞ o
2
xð�Þ þ j

�
ukþ1

2
¼ 4pjðBkþ1

2
� BkÞ: ð3:2bÞ

Note that (3.2b) is inserted in the heat equation resulting in the second Laplacian in (3.2a). Eqs. (3.2a) and

(3.2b) represent the approximate system that is solved in order to calculate corrections hkþ1
2
, ukþ1

2
for Bkþ1

2

and Ikþ1
2
, respectively. Finally, an update is made to complete a full step of the preconditioned iteration:
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Bkþ1 ¼ Bkþ1
2
þ hkþ1

2
;

hIkþ1i ¼ hIkþ1
2
i þ ukþ1

2
:

ð3:3Þ

Again, some insight into the behaviour of the new scheme can be gained by performing a von Neumann

analysis. As shown by (2.6) in Section 2, the amplitude of a Fourier mode of the error in the first step is

propagated according to

for kP 0 :
b̂bkþ1

2

ĥııkþ1
2
i

" #
¼ x 0

4px0 0

� �
b̂bk
ĥııki

� �
: ð3:4Þ

For the second step, a Fourier ansatz for hkþ1
2
and ukþ1

2

hkþ1
2
ðxÞ ¼ ĥhkþ1

2
ðnÞe�||nx; ukþ1

2
ðxÞ ¼ ûukþ1

2
ðnÞe�||nx

is introduced into (3.2a) and (3.2b) and we obtain

e2
h

� Dtke2ð�||nÞ2
i
ĥhkþ1

2
� e2DtðB0ÞðnÞ

3ðrs þ jÞ ð�||nÞ
2ûukþ1

2
¼ DtðB0ÞðnÞ4pjðb̂bk � b̂bkþ1

2
Þ;
�4pjĥhkþ1
2
þ
�
� e2

3ðrs þ jÞ ð�||nÞ
2 þ j

�
ûukþ1

2
¼ 4pjðb̂bk � b̂bkþ1

2
Þ;

or in matrix notation

for kP 0 :
e2 þ C2e2n

2 e2DtðB0ÞðnÞ
3ðrsþjÞ n2

�4pj jþ e2

3ðrsþjÞ n
2

" #
ĥhkþ1

2

ûukþ1
2

" #
¼ C1

4pj

� �
ðb̂bk � b̂bkþ1

2
Þ: ð3:5Þ

The determinant of the matrix in (3.5) is

D ¼ ðe2 þ C2e
2n2Þ j

�
þ e2

3ðrs þ jÞ n
2

�
þ e2DtðB0ÞðnÞ4pj

3ðrs þ jÞ n2 ¼ j

�
þ e2

3ðrs þ jÞ n
2

�
v� jC1 > 0

and, therefore, Eq. (3.5) can be explicitly solved for ĥhkþ1
2
and ûukþ1

2

ĥhkþ1
2

ûukþ1
2

" #
¼ 1

D
jþ e2

3ðrsþjÞ n
2 � e2DtðB0ÞðnÞ

3ðrsþjÞ n2

þ4pj e2 þ C2e2n
2

" #
C1

4pj

� �
ðb̂bk � b̂bkþ1

2
Þ ¼ 1

D
jC1

4pjv

� �
ð1� xÞb̂bk

¼ 1� x
D

jC1 0

4pjv 0

� �
b̂bk
ĥııki

� �
: ð3:6Þ

Combining (3.3), (3.4) and (3.6), the error of the new scheme after the update is propagated according to

b̂bkþ1

ĥııkþ1i

� �
¼ b̂bkþ1

2

ĥııkþ1
2
i

" #
� ĥhkþ1

2

ûukþ1
2

" #
¼ x� 1�x

D jC1 0

4px0 � 1�x
D 4pjv 0

� �
b̂bk
ĥııki

� �
: ð3:7Þ

The crucial parameter for convergence is the spectral radius of the matrix on the right side. It is given by

q � qðe; nÞ ¼ xðe; nÞ
���� � 1� xðe; nÞ

Dðe; nÞ jC1

����: ð3:8Þ
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It has the properties

• qðe; nÞ < q0ðe; nÞ < 1, since 0 < jC1 < D and 0 < x < 1,

• limðe;nÞ!ð0;0Þ qðe; nÞ ¼ 0,

• 8e > 0 : limn!�1 qðe; nÞ ¼ 0, and

• maxn qðe; nÞ6 0:2247, for typical cases in glass applications.

Hence, the preconditioned iteration converges faster than the original iteration. In particular, the long-
wavelength parts of the error are well damped in contrast to the previous behaviour (Fig. 1). Most im-

portant is, however, the fact that the spectral radius has an upper bound significantly less than 1. Therefore,

the approach meets the central goal of the preconditioning, as desired. The maximum of the spectral radius

q as a function of e was determined numerically. In all of the cases investigated it did not exceed values of

approximately 0:2247 (Fig. 2). Numerical evidence suggests, therefore, that the spectral radius of the

preconditioned iteration is bounded, although the author does not have a proof for this conjecture. It

should be noted that this property is also an important feature of the DSA method for the transport

equation. This emphasizes again the analogy between the two preconditioning techniques.
4. Fully discretized RHT system

The fully discretized heat equation using finite differences is given by

e2Bðnþ1Þ
i � DtðB0ÞðnÞi ðhI ðnþ1Þ

i;� i � 4pjBðnþ1Þ
i Þ � e2kDt

Bðnþ1Þ
iþ1 � 2Bðnþ1Þ

i þ Bðnþ1Þ
iþ1

Dx2
¼ e2BðnÞ

i : ð4:1aÞ

An equidistant discretization with mesh size Dx is used on the infinite space domain: xi ¼ iDx, i 2 Z. For the

transport equation we use diamond differenced space discretization together with the discrete ordinates
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method for the direction variable l [11]. The discrete ordinates are given by the knots lj of an even order

Gauss quadrature rule flj;wjg, j ¼ 1; . . . ;N , where wj are the weights and N is even

elj

I ðnþ1Þ
iþ1;j � I ðnþ1Þ

i;j

Dx
þ ðrs þ jÞI ðnþ1Þ

iþ1
2
;j

� rs

4p
I ðnþ1Þ
iþ1

2
;�

D E
¼ jBðnþ1Þ

iþ1
2

: ð4:1bÞ

The quantities with index iþ 1
2
are according to diamond differencing defined by cell averages

I ðnþ1Þ
iþ1

2
;j

¼
I ðnþ1Þ
iþ1;j þ I ðnþ1Þ

i;j

2
:

Solving the coupled system using the Gauss–Seidel method we have the following scheme for kP 1:

e2Bi;kþ1 � DtkðhIi;kþ1i � 4pjBi;kþ1Þ � e2kDt
Biþ1;kþ1 � 2Bi;kþ1 þ Bi�1;kþ1

Dx2
¼ e2BðnÞ

i ; ð4:2aÞ
elj
Iiþ1;j;kþ1 � Iiþ1;j;kþ1

Dx
þ ðrs þ jÞIiþ1

2
;j;kþ1 ¼

rs

4p
hIiþ1

2
;�;kþ1i þ jBiþ1

2
;k: ð4:2bÞ

The bar denotes spatial averaging. Given a vector q ¼ ðqiÞ of nodal values, the average qi is defined by

qi ¼
qiþ1 þ 2qi þ qi�1

4
:

A Fourier ansatz for the discrete errors

bi;k ¼ b̂bkðnÞe�||nxi ; ii;j;k ¼ ı̂ıj;kðnÞe�||nxi

gives

e2
h

þ DtðB0ÞðnÞi 4pj
i e�||nDx þ 2þ e��||nDx

4
� e2kDt

e�||nDx � 2þ e��||nDx

Dx2
b̂bi;kþ1

� DtðB0ÞðnÞi

e�||nDx þ 2þ e��||nDx

4
ĥıı�;kþ1i ¼ 0;
elj
e�||nDx � 1

Dx

"
þ ðrs þ jÞ e

�||nDx þ 1

2
� rs

4p
e�||nDx þ 1

2
h�i
#
ı̂ıj;kþ1 ¼ j

e�||nDx þ 1

2
b̂bk;

or, using the Euler�s representation of the complex exponential function,

e2
�

þ DtðB0ÞðnÞi 4pj cos2
nDx
2

� �
þ e2kDt

4

Dx2
sin2 nDx

2

� ��
b̂bkþ1

� DtðB0ÞðnÞi 4pj cos2
nDx
2

� �
ĥıı�;kþ1i ¼ 0; ð4:3aÞ
elj
2�||

Dx
sin

nDx
2

� �"
þ ðrs þ jÞ cos nDx

2

� �
� cos

nDx
2

� �
rs

4p
h�i
#
ı̂ıj;kþ1 ¼ j cos

nDx
2

� �
b̂bk: ð4:3bÞ

Dividing both equations by the cosine, redefining the constants

C1 ¼ DtðB0ÞðnÞ4pj; C2 ¼ kDt; v ¼ e2 þ C1 þ C2e
2K2
i



G. Th€oommes / Journal of Computational Physics 193 (2004) 544–562 553
in the context of the discretized variables and introducing the new variable

K ¼ 2

Dx
tan

nDx
2

¼
tan nDx

2
nDx
2

n

for notational convenience, makes it possible to write

b̂bkþ1 ¼
C1

v
ĥıı�;kþ1i;
�||eljK̂ııj;kþ1 þ ðrs þ jÞ̂ııj;kþ1 ¼
rs

4p
ĥıı�;kþ1i þ jb̂bk:

As before, the bracket ĥıı�;kþ1i can be calculated. In order to do so, the quantity

S ¼ 1

2

XN
j¼1

wj

1þ �||
eKlj
jþrs

� �2 ¼ 1

2

XN
j¼1

wj

1þ eKlj
jþrs

� �2
is redefined as well. Summing the transport equation over j then yields

ĥıı�;kþ1i ¼ 2p
XN
j¼1

ı̂ıj;kþ1wj ¼
rs

jþ rs

ĥıı�;kþ1i
�

þ j
jþ rs

4pb̂bk

�
S:

Here, we have to make the assumption that the knots and weights of the quadrature rule flj;wjg are

symmetric and that the number N of knots is even. This is true, in particular, for even order Gauss

quadrature. After setting

x0 ¼
j

rsþj S

1� rs
rsþj S

and x ¼ C1

v
x0;

the evolution of the Fourier mode n may be summarized by the 2� 2 system

for kP 0 :
b̂bkþ1

ĥııkþ1i

� �
¼ x 0

4px0 0

� �
b̂bk
ĥııki

� �
: ð4:4Þ

Formally, this is the same result that was obtained above in the case of continuous space and directions.

The difference is the factor

tan nDx
2

nDx
2

in the definition of v and S, respectively. It converges to 1 when n tends to zero such that v and S are

reduced to the form they have in the continuous case. But they may differ significantly when n is large
depending on the value of the grid size Dx. K takes the place of n. Nevertheless, the spectral radius q0 ¼ jxj
of the simple Gauss–Seidel iteration retains the relevant properties in the discrete case as before:

q0ðe; nÞ < 1 and lim
n!0

q0ðe; nÞ ¼
C1

e2 þ C1

; lim
ðe;nÞ!ð0;0Þ

q0ðe; nÞ ¼ 1:

The same analysis can be performed for the preconditioned iteration in discretized form. As in Section 3,
we start with a step of the simple Gauss–Seidel iteration
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e2Bi;kþ1
2
� DtðB0ÞðnÞi ðhIi;kþ1

2
i � 4pjBi;kþ1

2
Þ � e2kDt

Biþ1;kþ1
2
� 2Bi;kþ1

2
þ Bi�1;kþ1

2

Dx2
¼ e2BðnÞ

i ; ð4:5aÞ
elj

I ðnþ1Þ
iþ1

2
;j;kþ1

� I ðnþ1Þ
iþ1;j;kþ1

2

Dx
þ ðrs þ jÞI ðnþ1Þ

iþ1
2
;j;kþ1

2

¼ rs

4p
I ðnþ1Þ
iþ1

2
;�;kþ1

2

D E
þ jBðnþ1Þ

iþ1
2
;k
: ð4:5bÞ

Next, the P1 discretization in the following discretized form is solved:

e2hi;kþ1
2
� e2C2

hiþ1;kþ1
2
� 2hi;kþ1

2
þ hi�1;kþ1

2

Dx2
� e2DtðB0ÞðnÞi

3ðjþ rsÞ
uiþ1;kþ1

2
� 2ui;kþ1

2
þ ui�1;kþ1

2

Dx2

¼ DtðB0ÞðnÞi 4pjðBi;kþ1
2
� Bi;kÞ;
� e2

3ðjþ rsÞ
uiþ1;kþ1

2
� 2ui;kþ1

2
þ ui�1;kþ1

2

Dx2
þ jui;kþ1

2
¼ 4pjhi;kþ1

2
þ 4pjðBi;kþ1

2
� Bi;kÞ

and, finally, an update is made

Bi;kþ1 ¼ Bi;kþ1
2
þ hi;kþ1

2
;

hIi;�;kþ1i ¼ hIi;�;kþ1
2
i þ ui;kþ1

2
:

Introducing the Fourier ansatz for the errors, we have in the first substep

for kP 0 :
b̂bkþ1

2

ĥııkþ1
2
i

" #
¼ x 0

4px0 0

� �
b̂bk
ĥııki

� �
; ð4:6Þ

as previously shown for the Gauss–Seidel iteration. Moreover, after some manipulations the P1 system

gives

e2
�

þ e2C2K
2
	
ĥhkþ1

2
� e2DtðB0ÞðnÞ

3ðrs þ jÞ K
2 ¼ C1ðb̂bk � b̂bkþ1

2
Þ;
�4pjĥhkþ1
2
þ e2

3ðrs þ jÞK
2

�
þ j

�
ûukþ1

2
¼ 4pjðb̂bk � b̂bkþ1

2
Þ;

or in matrix notation ðkP 0Þ:

e2 þ C2e2K
2 e2DtðB0ÞðnÞ

3ðrsþjÞ K2

�4pj jþ e2

3ðrsþjÞK
2

" #
ĥhkþ1

2

ûukþ1
2

" #
¼ C1

4pj

� �
ðb̂bk � b̂bkþ1

2
Þ:

The corresponding determinant is

D ¼ e2
�

þ C2e
2K2
	

j

�
þ e2

3ðrs þ jÞK
2

�
þ e2C1

3ðrs þ jÞK
2 ¼ j

�
þ e2

3ðrs þ jÞK
2

�
v� jC1 > 0

and the matrix can be inverted. This yields
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ĥhkþ1
2

ûukþ1
2

2
4

3
5 ¼ 1

D
jþ e2

3ðrsþjÞK
2 � e2DtðB0ÞðnÞ

3ðrsþjÞ K2

þ4pj e2 þ C2e2K
2

" #
C1

4pj

� �
ðb̂bkþ1

2
� b̂bkÞ

¼ 1

D

jC1

4pjv

� �
ðx� 1Þb̂bk ¼

x� 1

D

jC1 0

4pjv 0

� �
b̂bk
ĥııki

" #
: ð4:7Þ

Putting Eqs. (4.6) and (4.7) together yields

b̂bkþ1

ĥııkþ1i

� �
¼ x� 1�x

D jC1 0

4px0 � 1�x
D 4pjv 0

� �
b̂bk
ĥııki

� �
ð4:8Þ

and the spectral radius has again the form

q � qðe;KÞ ¼ xðe;KÞ
���� � 1� xðe;KÞ

Dðe;KÞ jC1

����:
Furthermore, the properties of q remain unchanged, namely,

• qðe;KÞ < q0ðe;KÞ < 1, since 0 < jC1 < D and 0 < x < 1,

• limðe;KÞ!ð0;0Þ qðe;KÞ ¼ 0,

• 8e > 0 : limK!�1 qðe;KÞ ¼ 0, and

• maxK qðe;KÞ6 0:2247.
It should be mentioned that this result ows to the consistent discretization of the original system and its P1
approximation. If diamond differencing is used for the transport equation then the corresponding P1 ap-

proximation must be discretized using three point averages. This has been observed in the realm of

transport theory and has been a major contribution to the success of the DSA algorithm [2,11,12]. In the

present case, these findings imply, moreover, that also the heat equation has to include similar averages

such that the terms in (4.8) are correctly balanced. Other discretizations for the transport equation may be

used, of course, and in these cases different consistent discretizations will have to be derived.

It is known in the literature that the discretization of the transport equation using diamond differencing

(DD) can lead to numerical problems if the regime is optically thick [1]. Unphysical oscillations are ob-
served in the numerical solution for the radiative intensity. The use of the consistent discretization of the

RHT equations introduces averages of I and B in the temperature equation to make the accelerated method

convergent. This smoothes the oscillations of I in the temperature equation and stabilizes the discretization.

Unphysical numerical results, e.g., oscillations owing to problems with DD, have not been observed for the

temperature in our numerical experiments.
5. Numerical comparisons

As a test example we considered a RHT problem in the form

e2
oT
ot

¼ e2oxðkoxT Þ þ hjðI � BÞi; ð5:1aÞ
8l 2 ½�1; 1� : eloxI þ rsI ¼
1

4p
hrsIi þ jðB� IÞ; ð5:1bÞ
8l > 0 : Iðl; 0Þ ¼ Ibðl; 0Þ and 8l < 0 : Iðl; 1Þ ¼ Ibðl; 1Þ ð5:1cÞ
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with Dirichlet boundary conditions for the temperature

T ð0Þ ¼ Tl; T ð1Þ ¼ Tr: ð5:1dÞ

The heat conductivity in the heat equation for the temperature was k ¼ 1. We considered the radiative

transport equation with pure absorption and no scattering j ¼ 1, r ¼ 0 as is frequently done in models for

hot glass or for gas in the combustion chamber of turbines. The initial value for the temperature at the

beginning was the sine-shaped profile T0ðxÞ ¼ 1000þ 100 sinðpxÞ. The boundary values Tl and Tr had the

same value 1000 K. To these temperatures correspond the boundary values for the radiative intensity I
which were given by Stefan�s Law for air outside of the domain Ib ¼ BaðTbÞ ¼ n2a

r
p T

4
b . The refractive indices

were n ¼ 1:46 for glass and na ¼ 1:00 for air, respectively. We discretized the equation using an equidistant

mesh in space and in time. A stepsize of Dt ¼ 10�6 for the time and 129 spatial knots corresponding to

Dx ¼ 2�7 were used. The evolution was computed until the final time t ¼ 10�3.

Fig. 3 shows a comparison of the error reduction rates obtained for the simple iteration without pre-

conditioning and for the accelerated iteration with preconditioning. The ratio of the residual of two suc-

cessive iterates rk=rk�1 was monitored during the first time step Dt (convergence was the same for other time

steps). For vanishing e, the former approaches 1 while the latter remains bounded away from 1, as expected.

Table 1 displays the runtimes for solving the RHT problem. The data were measured on a Pentium 4
(1 GHz) running MATLAB 5 under Linux kernel 2.4.16. We compared the runtimes of the preconditioned

block Gauss–Seidel method presented in this paper with the simple block Gauss–Seidel iteration and

various other solvers. These other solvers are based on a formulation of the time discretized equations in

terms of a nonlinear stationary RHT problem at each time step. Firstly, Newton�s method was applied to

the nonlinear equation for T that had to be solved at each time step. Secondly, the multilevel approaches

proposed in [5] were implemented. The nested Newton�s method computes the solution of the RHT

equations on a coarse level using Newton�s method and takes this solution as the initial iterate on the
10
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Fig. 3. Error reduction rates of the simple Gauss–Seidel iteration and the preconditioned iteration. The first time-step of the evolution

of the RHT problem with Dirichlet boundary conditions for the temperature was examined by monitoring the relative residuals rk=rk�1.



Table 1

Run times (seconds) for solving the RHT system using different mesh sizes

nx GS PGS N nN nAB nK

33 0.05 0.06 0.10 0.09 0.10 0.09

65 0.09 0.11 0.16 0.14 0.17 0.14

129 0.17 0.20 0.29 0.24 0.30 0.24

257 0.36 0.60 0.63 0.46 0.54 0.42

513 0.81 1.68 1.38 0.94 1.04 0.76

1025 2.29 5.49 3.30 2.05 2.17 1.52

The solvers compared are Gauss–Seidel (GS), preconditioned Gauss–Seidel (PGS), Newton�s method (N), a nested Newton (nN),

nested Atkinson–Brakhage (nAB) and Kelley�s nested norm-convergent method (nK). The parameter value was e ¼ 1.
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subsequent fine mesh level, and proceeds in this way from the coarsest to the finest mesh. The nested

Atkinson–Brakhage method and Kelley�s nested norm-convergent variant of the Atkinson–Brakhage solver

also rely on this cascading of the initial iterates from coarse to fine meshes but they use different solvers

instead of Newton�s method at each level. In [5] it has been shown that Kelley�s method performs best
among these multilevel solvers and it should, therefore, also perform better than Newton�s method. We

compare our linear scheme, which relies on a preconditioner that is specifically adapted to the equation,

with these efficient nonlinear solvers for the RHT equation.

We solved the discretized system using different mesh sizes in order to assess how the preconditioned

iteration performs compared with, in particular, the fast multilevel solvers. As can be seen in Table 1, the

simple block iteration is – in the case e ¼ 1 – faster than the preconditioned iteration owing to the fact that

only few iterations were needed for convergence and the additional cost of the preconditioner was sig-

nificant, in particular when the system was large. Newton�s iteration was more time-consuming than the
preconditioned scheme while the three multilevel approaches were faster when the system became large, i.e.,

for nx P 257. This is what we would expect when using multilevel methods. In particular, Kelley�s solver
outperforms all of the other solvers in this case. Although the preconditioned scheme was sufficiently fast

for the small- to moderate-sized meshes it�s timing result was poor for the large mesh with nx ¼ 1025.

Finally, the runtimes in Table 2 show how the solvers perform when the regime becomes optically thick

for small values of e. The runtimes for the simple Gauss–Seidel iteration without preconditioning increased

tremendously when e approached the value 0.01 and convergence could hardly be achieved. Interestingly,

also Newtons method and nested Newton�s method suffered from slower convergence in the optically thick
case. In contrast, the preconditioned iteration remained remarkably unaffected from the strong optical

thickness as can be observed from the moderate increase of the runtimes.
Table 2

Run times (seconds) for solving the RHT system with variable parameter e (mesh size Dx ¼ 2�7)

e GS PGS N nN

1 0.17 0.20 0.29 0.24

0.75 0.18 0.23 0.31 0.25

0.5 0.23 0.26 0.41 0.26

0.25 0.33 0.31 0.55 0.29

0.1 1.02 0.40 1.04 0.60

0.075 1.62 0.43 1.14 0.76

0.05 3.28 0.47 1.59 0.90

0.025 11.26 0.48 2.62 1.21

0.01 64.93 0.49 6.62 2.99
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6. Conclusions

In this paper, we have presented a new solver for the fast solution of the radiative heat transfer equa-

tions, i.e., a coupled system of a heat equation and a transport equation. We proposed a particular pre-

conditioner that is adapted to the RHT problem in the optically thick regime. It is based on the P1
approximation to the radiative heat transfer equations and extends the ideas underlying the DSA algorithm

for the stationary transport equation. In [10] it has been shown that the P1 equations are a good ap-

proximation to the RHT equations for glass and that they perform particularly well in the optically thick
case.

We performed a von Neumann analysis to study the convergence properties of the simple and the

preconditioned block Gauss–Seidel iterations. This analysis showed that the use of the P1 approximation as

a preconditioner can successfully improve on the simple iteration by improving the error reduction of the

long-wavelength parts of the error.

Numerical experiments confirmed these findings and showed that the preconditioned iteration performs

much better in the optically thick regime than the simple iteration. Nevertheless, the higher cost for pre-

conditioning must be kept in mind. It should be noted, moreover, that the preconditioned iteration is also
faster than nested Newton�s method when e becomes small. This sophisticated method based on a multilevel

approach is known to be very efficient in solving RHT problems.

The method we propose uses DSA for solving the radiative transport equation. Original DSA is re-

stricted to one space dimension and the present study is concerned only with this case. Recent results in-

dicate, however, that DSA can be extended to higher dimensions [4,6]. Hence, the method should be

feasible in multi-dimensional geometries as well. Furthermore, for the sake of simplicity, the presentation

focuses on the frequency independent, grey model, but the results can be transferred to more general cases

as well. The same remark applies to the transparent boundary conditions for the transfer equation, where
general semi-transparent boundary conditions can be dealt with in a similar way.
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Appendix A. Gauss––Seidel iteration (II)

When the lower triangular matrix is used in (2.2c) the linear iteration is given by

for kP 0 :
A11 0

A21 A22

� �
Bkþ1

Ikþ1

� �
¼ e2BðnÞ � A12Ik

0

� �

and the corresponding system for the errors is then

for kP 0 :
A11 0

A21 A22

� �
bkþ1

ikþ1

� �
¼ �A12ik

0

� �

or more explicitly

e2
"

þ DtðB0ÞðnÞ4pj� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
bkþ1 ¼ DtðB0ÞðnÞhiki;
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eloð�Þ
h

þ rs þ j� rs

4p
h�i
i
ikþ1 ¼ jbkþ1:

The Fourier ansatz for the errors bkþ1 and ikþ1 leads to

e2
h

þ DtðB0ÞðnÞ4pj� e2DtðB0ÞðnÞð�||nÞ2
i
b̂bkþ1 ¼ DtðB0ÞðnÞĥııki;
elð�||nÞ
h

þ rs þ j� rs

4p
h�i
î
ııkþ1 ¼ jb̂bkþ1:

Hence, we have

b̂bkþ1 ¼
C1

v
ĥııki

and the bracket ĥııkþ1i is evaluated according to

ĥııkþ1i ¼ 4px0b̂bkþ1 ¼
C1

v
x0ĥııki ¼ xĥııki:

The result may be rewritten as a system in the form

for kP 0 :
b̂bkþ1

ĥııkþ1i

� �
¼ 0 C1

4pv
0 x

� �
b̂bk
ĥııki

� �
: ðA:1Þ

The iteration is accelerated by approximating the error equation by the following P1 system:

e2
"

� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
hkþ1

2
� e2DtðB0ÞðnÞ

3ðrs þ jÞ Dukþ1
2
¼ C1

4p
ðhikþ1

2
i � hikiÞ;
�
� e2

3ðrs þ jÞ o
2
xð�Þ þ j

�
ukþ1

2
¼ 4pjhkþ1

2
:

Introducing the Fourier ansatz here gives

for kP 0 :
e2 þ C2e2n

2 e2DtðB0ÞðnÞ
3ðrsþjÞ n2

�4pj jþ e2

3ðrsþjÞ n
2

" #
ĥhkþ1

2

ûukþ1
2

" #
¼

C1

4p
0

� �
ðhikþ1

2
i � hikiÞ

which upon inversion of the left hand matrix results in

ĥhkþ1
2

ûukþ1
2

" #
¼ x� 1

D
0 C1

4p jþ e2n2

3ðjþrsÞ

� �
0 4pjC1

" #
b̂bk
ĥııki

� �
:

Therefore, the overall matrix for the evolution is

ĥhkþ1
2

ûukþ1
2

" #
¼ 0 C1

4pv � 1�x
D

C1

4p jþ e2n2

3ðjþrsÞ

� �
0 x� 1�x

D jC1

" #
b̂bk
ĥııki

� �
ðA:2Þ

and the spectral radius, again, takes the form
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qðe; nÞ ¼ xðe; nÞ
���� � 1� xðe; nÞ

Dðe; nÞ jC1

����; ðA:3Þ

as in Section 3.
Appendix B. Jacobi iteration

Formally, we have the iteration

for kP 0 :
A11 0

0 A22

� �
Bkþ1

Ikþ1

� �
¼ e2BðnÞ � A12Ik

�A21Bk

� �
:

Consequently, the errors fulfill

for kP 0 :
A11 0

0 A22

� �
bkþ1

ikþ1

� �
¼ �A12ik

�A21bk

� �
;

or more explicitly

e2
"

þ DtðB0ÞðnÞ4pj� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
bkþ1 ¼ DtðB0ÞðnÞhiki;
eloð�Þ
h

þ rs þ j� rs

4p
h�i
i
ikþ1 ¼ jbk:

When we introduce the Fourier ansatz we obtain

e2
h

þ DtðB0ÞðnÞ4pj� e2DtðB0ÞðnÞð�||nÞ2
i
b̂bkþ1 ¼ DtðB0ÞðnÞĥııki
elð�||nÞ
h

þ rs þ j� rs

4p
h�i
î
ııkþ1 ¼ jb̂bk;

which can be simplified as before such that we end up with the evolution

for kP 0 :
b̂bkþ1

ĥııkþ1i

� �
¼ 0 C1

4pv
4px0 0

� �
b̂bk
ĥııki

� �
: ðB:1Þ

Therefore, the spectral radius is different, namely is the square root

q0ðe; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C1

v
x0

s
¼

ffiffiffiffi
x

p
: ðB:2Þ

In order to accelerate this Jacobi-type scheme we approximate the error equation by the P1 system

e2
"

� e2DtðB0ÞðnÞox
k

ðB0ÞðnÞ
oxð�Þ

 !#
hkþ1

2
� e2DtðB0ÞðnÞ

3ðrs þ jÞ Dukþ1
2
¼ C1ðBkþ1

2
� BkÞ þ

C1

4p
ðhIkþ1

2
i � hIkiÞ;
�4pjhkþ1
2
þ
�
� e2

3ðrs þ jÞ o
2
xð�Þ þ j

�
ukþ1

2
¼ þ4pjðBkþ1

2
� BkÞ;
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which gives the following equations for the Fourier modes

e2 þ C2e2n
2 e2DtðB0ÞðnÞ

3ðrsþjÞ n2

�4pj jþ e2

3ðrsþjÞ n
2

" #
ĥhkþ1

2

ûukþ1
2

" #
¼ C1

C1

4p
4pj 0

� �
b̂bk � b̂bkþ1

2

ĥııki � ĥııkþ1
2
i

" #
:

Inverting the matrix on left and taking (B.1) into account we find

ĥhkþ1
2

ûukþ1
2

" #
¼ 1

D
jþ e2

3ðrsþjÞ n
2 � e2DtðB0ÞðnÞ

3ðrsþjÞ n2

þ4pj e2 þ C2e2n
2

" #
C1

C1

4p
4pj 0

� �
� 1 � C1

4pv
�4px0 1

� �
b̂bk
ĥııki

� �

¼ 1

D
jC1 � xC1 jþ e2n2

3ðjþrsÞ

� �
� C1

4pvD

4pjðv� x0C1Þ 0

" #
b̂bk
ĥııki

� �

and, hence, the evolution of the accelerated scheme is described by

b̂bkþ1

ĥııkþ1i

� �
¼ b̂bkþ1

2

ĥııkþ1
2
i

" #
� ĥhkþ1

2

ûukþ1
2

" #
¼ 1

D
x0

C1

D jþ e2n2

3ðjþrsÞ

� �
� 1�x0

D jC1 0

�4pjðv� x0C1Þ þ 4px0D 0

" #
b̂bk
ĥııki

� �
: ðB:3Þ

Eventually, the spectral radius is found to be given by

q ¼ x0

C1

D
j

�
þ e2n2

3ðjþ rsÞ

�
� 1� x0

D
jC1: ðB:4Þ
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